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Abstract-Three sets of characteristic scales for the conduction layer, the transition layer and the convection 
layer are proposed to analyze the mean thermal structure in a turbulent thermal convection without mean 
motion. These scales are formulated based on molecular or turbulent eddy contribution to the momentum 
and heat transports in each layer. Using the proposed scales and a gradient matching technique at the 
interface between two adjacent layers, Kraichnan’s (Physics Fluids 5, 1374 (1962)) multi-layered structure 
of the mean temperature gradient profile is re-established. If the conduction scales are used to non- 
dimensionalize mean temperature gradient data near the wall, they form a plausible correlation curve that 
is nearly independent of the Prandtl number and the Rayleigh number for the range of experiments. From 
the correlation curve, it is found that the convection layer or the similarity layer with the slope of -4/3 
begins to appear after about Z+ w 15 and the proportionality constant of the -4/3 power law of the mean 
temperature gradient is found to be about 0.6 or d@+/dr+ = O.~Z;~‘~, where 0, and Z+ are non- 
dimensional temperature and distance scaled by the respective conduction scales. Further, a wall-layer 
model for the mean temperature gradient profile is formulated in accordance with the power law, 

dO+/dz+ _ z;“, across the layers, which is in good agreement with the data. 

1. INTRODUCTION 

ALTHOUGH turbulent thermal convection over a 
heated horizontal flat plate without mean flow has 

been studied by many investigators during the past 
decade, the mean temperature profile in the fluid layer 
is still controversial. The seemingly simple picture of 
the turbulent thermal convection is complicated by 
the Prandtl number effect which dictates relative mag- 
nitude between rates of momentum and heat transfer 
by the molecular motion. Priestley [l] in his dimen- 
sional analysis and mechanistic theory of turbulent 
thermal convection problem over a horizontal terrain 
showed that the mean temperature gradient can be 
represented by a power law, dT/dz cc z-‘, and 
suggested that TV = 4/3, the so-called similarity law. 
Malkus [2] applied a variational method to turbulent 
thermal convection in a fluid layer between two hori- 
zontal flat plates (Rayleigh convection) and predicted 
that c( = 2. 

Later, Priestley’s similarity law was theoretically 
supported by Kraichnan [3] who developed a modified 
mixing length theory for the analysis of the Rayleigh 
convection. His results suggest that, when the Prandtl 
number (Pr) of fluid is greater than a transition 
Prandtl number (Pro), at which momentum and heat 
are transported at the same rate, there exists a power 

law layer with LY = 2 between the conduction layer 
very close to the wall and the similarity layer. Later, 
Panofsky [4] again conformed the similarity layer by 
an application of the matching condition between the 
Monin-Obukov scaling and a convective scaling in 
the planetary boundary layer. There have been a num- 
ber of experimental observations in laboratories and 
in the open atmosphere, however, considerable 
controversy on the power law profile of the mean 
temperature gradient still prevails. 

In summary, Townsend [5], Goldstein and Chu [6], 
Chu and Goldstein [7] and Carrol [8] obtained power 
law profiles with c( = 2 in laboratory convection 
chambers. Croft’s [9] laboratory data, data of Dyer 
[lo] and Businger et al. [ 1 l] in the windless free con- 
vection region of the atmospheric boundary layer give 
a good correlation with tl = 1.5. Although Deardorff 
and Willis’ [12] data for air in a range of Rayleigh 
numbers (Ra) between ‘lo6 and 10’ follow the power 
law with a = 2 more closely, they observed a tendency 
of the index a to approach 4/3 as Ra becomes larger ; 
thus Priestley’s similarity law seems to be an asymp- 
totic case for Ra -+ 00. 

The concept of a layered structure has been adopted 
in Kraichnan’s [3] mixing length analysis and in 
Carrol’s [8] interpretation of the thermal structure 
observed in a Rayleigh convection chamber with air. 
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NOMENCLATURE 

C coefficient (equation (32)) B thermal expansion coefficient 

9 gravitational acceleration 6, conduction layer thickness 

H distance between two plates 6% Kronecker delta 

k turbulent kinetic energy Q temperature fluctuation 

NU Nusselt number 0:. mean of r.m.s. temperature fluctuations in 

P pressure fluctuation the conduction layer 

P mean pressure @+ non-dimensionalized temperature 

Pr Prandtl number Ic molecular diffusivity of heat, or von 

PrO transition Prandtl number Karman constant 

Q total kinematic heat flux Ktl buoyancy similarity constant 

Ra Rayleigh number K, eddy diffusivity of heat 

t time V molecular viscosity 

T mean temperature Vt eddy diffusivity of momentum 

T, temperature of the upper plate P density 

Th temperature of the bottom plate r, wall shear stress. 
AT temperature difference between two plates 
AT, temperature difference across the Subscripts 

conduction layer C conduction layer 

U, M, velocity fluctuations i,_i Cartesian tensor indices, or reference 

u, friction velocity layer indices 

U mean velocity lc transition layer for Pr cc Pro 
,V:. mean of r.m.s. values of the vertical V transition layer for Pr >> Pr, 

advective velocity in the conduction * convection layer 

layer + dimensionless value by conduction 

Z distance from bottom plate. scale. 

Greek symbols Superscript 

i;( power law index instantaneous variables. 

Carrel’s results did not, however, conform Kraich- 2. CHARACTERISTIC SCALES 

nan’s three-layered structure. Instead, he argued that 
it consists of a ‘conduction layer’ very close to the 
bottom plate, a ‘transition layer’ in which c( = 2 and 
an ‘interior region’ in which c( + co. 

Recently, there has been considerable progress in 
developing computational turbulence models for 
predicting buoyancy-affected convection flows; for 
example, Zeman and Lumley [13], Ljuboja and Rodi 
[14], Chung and Sung [15], Shih and Lumley [16] and 
Weinstock [17]. Since, however, most computational 
models are valid for high Peclet number flows, a wall 
function which describes the mean temperature vari- 
ation near the wall is definitely called for in order to 
provide the near-wall boundary conditions for the 
high-Peclet-number-modeled turbulence equations 
which work only within the interior fluid layer. A 
similar approach has been widely used in com- 
puting wall-bounded shear flows by employing the 
well-known logarithmic mean velocity profile scaled 
by the plausible characteristic friction velocity 
U, = J(z,,,/p) and length v/u,. In order to find such a 
wall function for the mean temperature profile in the 
turbulent thermal convection, it is required to clarify 
further the controversial power law and to devise 
proper characteristic wall scales of velocity, length 
and temperature. These requirements are the motiv- 
ation of the present study. 

A new four-layered structure is proposed as in Fig. 
1, where most responsible mechanisms for transport 
of momentum and heat are shown for two cases Pr s 
Pr, and Pr cc Pr,, separately. Recall that the trans- 
ition Prandtl number Pr, was estimated to be about 
0.1 by Kraichnan [3]. 

Evidently, transport processes in layer I, the ‘con- 
duction layer’, are dominated by molecular viscosity 
(v) and molecular diffusivity of heat (K). In layers III 
and IV, the ‘convection layer’ and the ‘buoyancy- 
defect layer’ [18], respectively, eddy diffusivity of 
momentum (v,) and heat (KJ are assumed to be pre- 
dominant. For fluid with Pr >> Pr,, molecular vis- 
cosity and eddy diffusivity are important mechanisms 
in the ‘transition layer’ (layer II), and the converse 
is true for fluid with Pr cc Pr,. Relevant governing 
equations for the flow field without mean motion are 

a7- a 

= (- K aT -- 

at ax, wpzp ax, U/Q > (2) 

where the Boussinesq approximation and Reynolds 
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T= T, <T, 

Pr << Pr, 
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FIG. 1. A proposed four-layered structure and transport mechanisms in turbulent thermal convection. 

decomposition, z& = U,+ ui, F = T+ 0, P” = P+p 

have been used and nondimensionalized by a velocity 
scale w,,, a length scale zp and a temperature defect 
scale l3,. For a steady flow field, the total kinematic 
heat flux Q which is the sum of the molecular and the 
turbulent kinematic heat fluxes 

Q=r$+G 

is constant across the layers, and it is an important 
independent reference quantity which relates 8, and 
wr as 

Q = WA 

throughout the layers. The buoyancy term in equation 
(1) is most active at any point in the fluid which causes 
the fluid to be in turbulent convective motion. This 
observation and relation (3) lead us to another scaling 
law 

sBQz, j= 1 
WP 

(4) 

(a) Convection layer III 
Now, since molecular terms in equations (1) and 

(2) are negligible in layer III, the characteristic length 
scale of large-scale eddy motion should be determined 
by the geometry. Hence, we choose zP = H, the dis- 
tance between two plates. Denoting the characteristic 
scales in layer III by a subscript *, equations (3) and 
(4) and the length scale, zP = H, yield the following 
scaling laws : 

Z* =H (5) 

w* = WQZ,) “’ (6) 

Q* = Q/w, 

which are precisely the same as Deardorff [ 191. 

(b) Transition layer II 
When Pr >> Pr,, the diffusion term in equation (2) 

is negligible but that in equation (1) must be set to a 
constant value. 

For convenience, we let 

V 
-= 1. 
wPzP 

(8) 

Then equations (3) (4) and (8) determine the follow- 
ing transition scaling law for Pr >> Pr, : 

w, = WvQ) “4 

Similarly, for Pr K Pro, we obtain 

w, = WKQ)“” 

z, =z 
w K 

o,=% 
W, 

(12) 

(13) 

(c) Conduction layer I 
In the conduction layer, both the momentum and 

heat are transferred by the molecular motions, and 
Long [18] assumed that the advective motion in the 
vertical direction is balanced by the conduction 
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-6 
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K 

where WA is the mean of r.m.s values of the vertical 
advective velocity in the conduction layer and 6, the 
conduction layer thickness. Also it is assumed by 
Long [18] that within the conduction layer, the buoy- 
ancy force, &E, where 0: is the mean of r.m.s. tem- 
perature fluctuations, and the viscous force, vn~~/b~, 

are of the same order 

But, since most heat is transferred by the molecular 
conduction in the conduction layer, we may have the 
following order-of-magnitude relation : 

Q - KAT,I& 

where AT, is the temperature drop across the con- 
duction layer. Moreover, since 0; is of the order of 
AT,, the following approximations can be made : 

Consequently, if such an approximate value of wg 
in the above relation is selected as the characteristic 
velocity scale in the conduction layer, we finally have 

w, = (15) 

Then. the length scale z, can be set as the same as 

6, - it/w; 

z -5 c- 
w, 

(16) 

and the temperature scale is estimated by equation (3) 
as follows : 

(17) 

3. GRADIENT MATCHING AND POWER LAWS 

Let us assume that the mean temperature profiles 

in two adjacent layers, i andj, can be scaled by 

T-T, 
-=j; z 

0, 0 Zi 

and 

(19) 

where T, and 7; are reference temperatures, zi and z, 
are length scales and 8, and 0, are temperature defect 
scales for layers i and j, respectively. Then, a smooth 
gradient matching at the interface between the two 
layers requires the following condition : 

(20) 

(a) Case 1, Pr >> Pr, 
When we apply condition (20) to the interface 

between the conduction layer and the transition layer, 
the scale relations (11) and (17) make the coefficient 
in the right-hand side of equation (20) to be (z,/zJ 
(0,./O,) = (z,/z,,) x (w&J. Using equations (9) and (15), 
it is easy to show that wJwV = z,/z,. Then, the co- 
efficient becomes (zJzJ 2. Finally, multiplying both 
sides by (z/z,)’ yields the following equation : 

(gJd# = ($@z!& (21) 

Since the left-hand side of this equation depends only 
on z/z, and the right-hand side only on z/z,, each side 
must be a constant. Hence, we obtain a power law 

dT -2 

zKZ 
Similarly, at the interface between the transition 

layer and the convection layer, condition (20) yields 
the following equation : 

4 z 4’3 d!Nz,) 
(23) 

z* d(z/z,) 

We obtain Priestley’s similarity law 

dT 
-_=Z -413 

dz 

It should be noted that the power law with c( = 2 
does exist between the conduction layer and the con- 
vection layer for Pr >> Pr, as has been observed by 
many experiments mentioned before. 

(b) Case 2, Pr c Pro 
The gradient matching condition (20) at the inter- 

face between the conduction layer and the transition 

layer yields 

df,(z/zJ 
d(z/z,) 

dL(z/zJ _ constant 

d(z/zJ 
(25) 

which gives a profile 

(T,,-T)KZ (26) 

where T,, is the temperature of the bottom plate. 
A similar application of equation (20) at the inter- 

face between the transition layer and the convection 
layer shows again that Priestley’s similarity law (24) 
must hold in this region. 

Now, the linear profile (26) implies that, when 
Pr << Pr,, the conduction layer penetrates deep into 
the interior fluid to directly contact the convection 
layer. 

The above results are precisely the same as those 
of Kraichnan’s [3] mixing length analysis, which are 
summarized in Fig. 2. Past objections on the existence 
of the similarity layer by many experimental studies 
may be due to the fact that their measurements may 
not have been made in a range far enough from the 
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a) Pr >> Pr, b) Pr << PI=, 

FIG. 2. Theoretical profiles of mean temperature gradients in turbulent thermal convection : (a) Pr >> Pr,; 
(b) Pr -cc Pr,. 

bottom plate to find the similarity layer, or that the 
magnitude of Ra is not large enough for the flow field 
to have the similarity layer (see Long [ 181). 

4. MEAN TEMPERATURE GRADIENT PROFILE 

AND ITS WALL-LAYER MODEL 

In order to investigate the feasibility to formulate a 
wall-layer model for the mean temperature gradient 
profile with the proposed conduction scales, mean 
temperature profile data reported in various literature 
are re-analyzed. Although there are a number of 
experimental results available, many of them could 
not be used for one of the following reasons : (1) 
Rayleigh numbers were not large enough to have the 
similarity layer ; (2) they have only a few data points, 
thus, the mean temperature gradients cannot be ob- 
tained ; (3) only the mean temperature profiles within 
a relatively thin layer were available in the reports ; 
(4) necessary experimental values for conversion of 
the scales are not presented. 

Therefore, experimental data of Goldstein and Chu 
[6] and Yun and Chung [20] for air and Chu and 
Goldstein [7], Yun and Chung [20] for water are used 
in the present analysis. 

Figure 3 shows the profiles of mean temperature 
gradients in air for Ra in a range, 8.12 x lo6 < Ra 

< 9.56 x lo’, presented by Goldstein and Chu [6] 
and Yun and Chung [20]. The gradient data of the 
former study were obtained by fitting five successive 
temperature measurements, using a Mach-Zehnder 
interferometer, with a second-order polynomial 
to get the slope at the position of the central point, 
and those of the latter were calculated by differ- 
entiating the cubic spline interpolated curve to the 
point-wise mean temperature data measured by the 
resistence wire method. The data points scatter re- 
latively widely. However, it is not difficult to identify 
the three distinct power law regions ; namely, the zero- 

gradient region in z+ < - 1.2, - 2 power law region 

in -1.2 <z+ < - 12, and the -4/3 similarity region 

inz, > - 15. Goldstein and Chu [6] claimed that their 

data fitted to the - 2 slope quite well over a large range 
of z+ for high Ra. It is, however, interesting to note 
that their data remarkably follow the - 4/3 slope in a 
region z+ > 15, which is wider than that for the -2 

slope in a region, 2.5 < z+ < 8.5. 
Similarly, mean temperature gradient data in water 

of Chu and Goldstein [7] and Yun and Chung [20] 
are plotted in Fig. 4. Here, the data for z+ > 8 scatter 
very widely. However, a close examination of the indi- 
vidual data sets does suggest that there exists a -4/3 
similarity region again in this water case. It may be 
argued that Chu and Goldstein [7] have fitted the - 3 
slope to their data in ref. [7]. However, Fig. 17 in ref. 
[7] does not seem to support such - 3 slope behavior. 
It is good only for the case of Ra = 9.34 x 106. The 

FIG. 3. Mean temperature gradient profiles in Rayleigh con- 
vection of air. 
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FIG. 4. Mean temperature gradient profiles in Rayleigh con- 
vection of water. 

other two profiles in the same figure for Ra = 
5.88 x lo6 and 7.09 x lo6 vary quite differently from 
the data of Ra = 9.34x 106, and it is rather a sur- 
prise to find that the upper three points of Ra = 
5.88 x lo6 nicely demonstrate the -4/3 similarity 
law, albeit they are low relative to other data. 

If the similarity law 

is fitted to the data in Figs. 3 and 4, it can be seen that 
the ‘buoyancy similarity constant’ IC,, lies in the range 
0.40.85, which can be found from the cutting points 
of the -4/3 slope lines through the data to the axis 

Z + = 1.0. 
Now, we are in a position to derive a wall-layer 

model which represents the thermal structure near the 
wall region, which can be used as a supplementary aid 
to the computation of the turbulent thermal con- 
vection problem with the current computational 
models. 

The capability to accurately represent the near-wall 
temperature variation is important in computing the 
wall bounded flows since intensive variation of the 
mean temperature profile in the wall layer requires a 
very large number of computational mesh points. 
More importantly, an adequate computational model 
for the near-wall thermal turbulence is not presently 
available, and, therefore, wall functions are required 
to provide near-wall boundary values for the tur- 
bulence variables under consideration. 

As for a reference, formulations of the near-wall 
velocity profile functions are briefly reviewed as 
follows. Dean [21] proposed an implicit formula by 
combining Spalding’s [22] implicit function for the 
mean velocity profile in the viscous sublayer, tran- 
sition layer and the logarithmic layer with Finley et 
d’s [23] wake function for the outer layer. In order to 

obtain a more convenient explicit expression, Musker 
[24] devised an interpolating formula for turbulent 
eddy viscosity which is valid both in the near-wall 
layer and in the logarithmic law of the wall layer. 
Quite recently, Walker et al. [25] and Haritonidis [26] 
have proposed wall-layer models for the near-wall 
velocity profile in turbulent flows based on the coher- 
ent bursting process in the wall region. 

Parallel to the derivation of Musker [24], which is 
the simplest and easily extendable to the temperature 
field, a formula for the mean temperature gradient 
profile in the turbulent thermal convection may be 
obtained as follows. When an eddy diffusivity model 
is employed for the turbulent kinematic heat flux, we 

have 

dT 
wt3 s -K,-. 

i3Z 

Here K, is the eddy diffusivity of heat and w0 the 
turbulent kinematic heat flux in the positive z-direc- 
tion. Then the non-dimensional energy equation for 

a horizontal homogeneous field becomes 

( > 1+: $1 

where the first term on the left-hand side in this equa- 
tion represents the molecular contribution and the 
second term, the turbulent eddy contribution to the 
total heat flux. It may be easily shown that, for a 
region very close to the wall, the mean temperature 
profile is very nearly linear 

0, =z+ 

and that the eddy diffusivity is proportional to the 
cube of the distance from the wall 

Kt 
- = cz: 
K 

where c is a constant to be determined with reference 
to mean temperature data. This derivation is in exact 
analogy with that for the turbulent eddy viscosity very 
near the wall in the turbulent boundary layer or duct 
flows [24]. 

In the transition layer, assuming K,/K >> 1, the 
power law with t( = 2 as in equation (22) together 
with energy equation (29) yields the following 

approximation : 

‘C’cCz:. 
u 

Likewise, in the similarity layer, we must have 

Kt 1 
-Z-z d/3 
K Kb 

+ 

(31) 

where ICY is the counter-part of the well-known von 
Karman constant K N 0.4 in the logarithmic velocity 
profile formula, and may be called the ‘buoyancy simi- 
larity constant’. 
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The variation of rc,/lc along the vertical distance 

from the bottom plate may be represented by a form 

ments between the theory and the data are satis- 
factory, and the comparison clearly demonstrates that 

the proposed conduction scales perform well to rep- 
resent the mean temperature profiles near the wall 
region with a simple wall-layer model. 

which successively satisfies requirements (30)-(32) ; 
i.e. K,/K + z: as z+ -+ 0, ICJK + z:’ as z, + cc and 
IC,/IC + z: in between these limits. 

5. CONCLUSIONS 

Substitution of equation (33) into energy equation 
(29) yields 

a@+ 1+ rc&3 

a=+ - 1 +K&Z:l’+CZ: ’ 
(34) 

The computed profile of the temperature gradient 
by equation (34) with K~ = 0.6, c = 0.045 for air and 
with K~ = 0.6, c = 0.05 for water are shown in Figs. 3 
and 4. The extent of the power law layer of tl = 2 
depends on the constant c, and the temperature gradi- 
ent for small z+ < 10 is very much more dependent on c 
than Q. The constant c turns out to be a function of 
Prandtl number, whereas rcb seems to have a universal 
value like the von Karman constant K = 0.4. How- 
ever, any conclusive statement cannot be made due 
to insufficiency of data for different Pr. 

Under an assumption that a fluid layer in a tur- 
bulent thermal convection between two horizontal flat 
plates has a layered structure, three sets of character- 
istic scales have been formulated and these are used 
to confirm the power law behavior of the mean 
temperature profiles of Kraichnan [3]. The results 
show that, for high Prandtl number, the fluid layer 
consists of a conduction layer in which the mean tem- 
perature profile is almost linear, a transition layer in 
which (dT/dz) cc z-*, and a convection layer or a 
similarity layer in which (dT/dz) cc z~“‘~, and that, 
for low Prandtl number, the fluid layer consists of two 
layers, a conduction layer and a convection layer. 

In computing the turbulent thermal convection, the 
information about the thermal field required to solve 
the governing equations for other turbulence quanti- 
ties, for examples, the turbulent kinetic energy k, the 
kinematic heat flux w0 and the temperature variance 
6*, is the mean temperature gradient, rather than the 
mean temperature itself. Therefore, the wall-layer 
model (34) is sufficient as the supplementary relation 
to turbulence model equations at a certain closure 
level. However, it may be of practical interest to find 
the mean temperature profile near the wall region, 
and it can be easily obtained by integrating the wall 
function (34) from the wall, z+ = 0. The integrated 
mean temperature profiles with the constant K~ = 0.6 
and c = 0.045 and 0.05 are compared with the exper- 
iments of Goldstein and Chu [6] for air, and of Chu 
and Goldstein 171 for water in Fig. 5. Overall aeree- 

Experimental mean temperature data available in 
the literature were collected and re-analyzed with the 

proposed conduction scales. All of the data used show 
a good correlation with each other. It is noted that 
the controversial similarity layer with a temperature 
gradient of -4/3 slope does exist in the interior of the 
fluid at about z, > 15. 

Finally, based on the conduction scales, a wall- 
layer model for the mean temperature gradient profile 
is formulated, which may be used to fill the com- 
putational gap between the wall at z+ = 0 and the 
computational lower boundary point at a certain 
point off the wall z+ # 0 from which computational 
turbulence model equations at a certain closure level 
may be integrated. 
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ANALYSE D’ECHELLE ET MODELE DE COUCHE PARIETALE POUR LE PROFIL DE 
TEMPERATURE DANS UNE CONVECTION THERMIQUE TURBULENTE 

Rbum&Trois systemes d’khelles caracteristiques pour la couche de conduction, la couche de transition 
et la couche de convection sont proposes pour analyser la structure thermique moyenne dans une convection 
thermique turbulente sans mouvement moyen. Ces Cchelles sont formulees a partir d’une contribution 
moltculaire ou turbulente des transports de quantitts de mouvement et de chaleur dans chaque couche. 
En utilisant les tchelles proposees et une technique de gradient a l’interface entre deux couches adjacentes, 
on retablit la structure multi-couches de Kraichran (Physics Fluids 5, 1374 (1962)) du profil de gradient de 
temperature moyenne. Si les echelles de conduction sont utilisees avec les donnees de gradient de tem- 
perature moyenne non dimensionelle prts de la paroi, elles forment une courbe de correlation plausible 
qui est presque independante des nombres de Prandtl et de Rayleigh pour le domaine des experiences. Par 
cette courbe, on voit que la couche de convection ou la couche de similitude avec la pente -4/3 commence 
a apparaitre aprts environ z+ 5 15 et le coefficient de proportionnalite a la loi de puissance -4/3 du 
gradient de temperature moyenne est d’environ 0,6 soit dO+/dz+ = O,~Z;“‘~, od @+ et z, sont la temperature 
et la distance reduites par les tchelles respectives de conduction. Ensuite un modele de couche parietale 
pour le profil du gradient de temperature est formule en accord avec la loi-puissance, dO+/dz+ N z;” a 

travers les couches, lequel est en accord convenable avec les donnkes. 
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ANALYSE DER CHARAKTERISTISCHEN GRGSSENMASZE UND 
WANDGRENZSCHICHT-MODELL FtiR DAS TEMPERATURPROFIL BEI TURBULENTER 

THERMISCHER KONVEKTION 

Zusammenfassung-Es werden drei S&e fiir die charakteristischen Grogenmage der Warmeleitungs- 
grenzschicht, des Ubergangsbereichs und der Kovektionsgrenzschicht vorgeschlagen, urn die mittlere 
Tempcraturverteilung bei turbulenter thermischer Konvektion N untersuchen. Diese GriiSenmaDe werden, 
basierend auf dem Beitrag der molekularen oder turbulenten Wirbel zum Impuls- und Warme- 
transport, in jeder Schicht forrnuliert. Unter Verwendung der vorgeschlagenen GroSenmaBe und einer 
Gradientenanpassungs-Technik an der Grenztlache zwischen zwei benachbarten Schichten wird die 
mehrschichtige Struktur des Profils des mittleren Temperaturgradienten nach Kraichnan wiederhergestellt 
(Physics Fluid 5, 1374 (1962)). Wenn man die Abmessung der Wirmeleitungsgrenzschicht dazu benutzt, 
die Werte des mittleren Temperaturgradienten in Wandnahe dimensionslos zu machen, dann ergeben diese 
eine einleuchtende Korrelationskurve, die im Bereich der experimentellen Daten unabhangig von der 
Prandtl-Zahl und der Rayleigh-Zahl ist. Anhand der Korrelationskurve zeigt sich, dag die Konvektions- 
grenzschicht oder die Ahnlichkeitsgrenzschicht mit der Steigung -4/3 bei z+ N 15 beginnt und die Pro- 
portionalitlts-Konstante des -413 Potenzgesetzes fur den mittleren Temperaturgradienten ungefahr 0,6 
betrlgt (d.h. dO+/dz+ = O,~Z;~“. Dabei bezeichnen 0, und z, die dimensionslose Temperatur bzw. 
den dimensionslosen Wandabstand unter Verwendung des GroBenmaBes der Warmeleitungsgrenzschicht. 
Dariiber hinaus wird in fjbereinstimmung mit dem Potenzgesetz dO+/dz+ proportional z;” ein 
Wandgrenzschichtmodell fur das Profil des mittleren Temperaturgradienten quer durch alle drei 

Schichten aufgestellt, das die MeBwerte gut wiedergibt. 

RCHOJIb30BAHME AHAJIM3A MACIIITAEOB M MOJHSJIH IIPMCTEHHOI-0 CJIOII mCr 
OHPEflElIEHMX HPO@MJIll TEMIIEPATYP I-IPM TYP6YJIEHTHOR TEI-IJIOBOR 

KOHBEKHMM 

zilfIIOT~lVI~ UCJtblO %IUlH3a CpCAHei-i TeIIJIOBOk CTpyKTypbI B yCnOBHS4x Typ6yneHTHOfi TUUIOBOfi 

KOHBeK~~~~~OTC~CTBH~~~erOABH~eHH~~~~O~eHblTpH~O~Myn~pOBKHXapaKTepHbIx MXLU- 

Ta6OB AJIK IIpOBOAJWerO, IIepexoAHoro W KOHBeKTHBHOrO CnOeB. YKa3aIiHbIe BbIpameHH,, @OpMyJIU- 

pywTcrmxoAn 83hfoneKynnpIioro wni mxpenoro nKana n nepeHoc uhfnynbca n~etma B KamoM cnoe. 
C tlOMOlIIbH3 IIpeAJIO~eHHbIX MaCUITa6OB H rpameHTHor0 MeTOAa CpaLLviBaHHa Ha rpaHaqe AB~X 

CMemHbIX Cnoen BoCmaHaBnHBaeTCK omicbmaeMall KpaiisHaHoM(f'hysics Fluids 5, 1374(1962))hinoroc- 
nOfiHa5l CTpyKTypa IIpO@iJIK CpeAHeTeMnepaTypHbIX rpaAUeHTOB. B CnyYae IIpHMeHeHWl MaCIIITa6OB 
TennonpoeoAHocT~ Am 0&3pa3hsepasaHnn AaHHbtx no cpeAIieTeMnepaTypHot4y rpameHTy e6mi3B 

CTCHKU nonyyesa o6o6mamman K,,HBa,,,no9TH He 3aBwnuaK OT 3HaqeHsiii gncen npaHATnH B P3nen B 

w2cneAyebtoh4 ri 3KcnepnrdeHTe Asiana30He. M3 nonyseHHoii KPHBO~ cneAyeT, ST0 KomeKTamibrk BnN 

aBTOMOAenbHbIii CnOii C HPKJIOHOM, PaBHbIM -413, B03HWKXT npUMepH0 IToCJ‘e Z+ u 15, a TaKxe, 'IT0 

K03@&WieHT IIpOlTOpI@iOHZJIbHOCTli CTeIleHHOfi JaBPiCHMOCTU - 413 CpeAHeTeMIIepaTypHOrO rPaAEieHTa 
coCTannneT npuMeptIo 0,6 WIH dO+/dz+ = O.~Z;~‘~, me 0, n z+&3pa3MepHbIe TeMnepaTypa B pacc- 

TOIlHHe B COOTBeTCTByKlUHX MaCIIITa6aX rIpOBOAHMOCTH. Ha OCHOBe CTUWGiOii 3aBBCBMOCTH 

dO+Jdz+ _ z;” C+OpMyJIHpOBaHa MO~‘%lb npHCTeHHOr0 CJIOIl &WI lI~$UJIK C~AHeTeMne,,aTypHbIX 

rpaAHeHTOB B CJIOIIX, KOTOpaK COPOIUO COI’JtaC)‘eTCS C 3KCllCPHMCHTEUIbHbIMH AaHHbIM&i. 


